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In this study, exact closed-form expressions for the vibration modes of the

Euler–Bernoulli beam in the presence of multiple concentrated cracks are presented.

The proposed expressions are provided explicitly as functions of four integration

constants only, to be determined by the standard boundary conditions. The enforcement

of the boundary conditions leads to explicit expressions of the natural frequency

equations. Besides the evaluation of the natural frequencies, neither computational

work nor recurrence expressions for the vibration modes are required.

The cracks, that are not subjected to the closing phenomenon, are modelled as a

sequence of Dirac’s delta generalised functions in the flexural stiffness. The Eigen-mode

governing equation is formulated over the entire domain of the beam without

enforcement of any continuity conditions, which are already accounted for in the

adopted flexural stiffness model. The vibration modes of beams with different numbers

of cracks under different boundary conditions have been analysed by means of the

proposed closed-form expressions in order to show their efficiency.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Several studies have been conducted in the last decade aimed at the detection and identification of damages in civil and
mechanical structures, in order to assess their general health or their residual load carrying capacity. Health monitoring
and damage detection can be conducted by executing non-destructive vibration tests in view of the easy repeatability of
such tests. Damage identification on the basis of dynamic measurements is usually conducted by means of numerical
procedures in view of the difficulty in obtaining explicit solutions of both the direct and inverse analysis problem. For the
latter reason, the study of simple structural systems, such as straight beams subject to concentrated damages, has been
conducted by several authors [1–20]. A few authors have successfully addressed aspects regarding the identification of
single cracks, leading to explicit expressions for the solution of the inverse problem [5]; while the assessment of the
variation of the natural frequencies on account of damage and position of a concentrated crack has been clarified in [4,6,11].
However, several characteristics, particularly concerning the case of identification of damage and positions of multiple
cracks by means of dynamic tests, remain unsolved.

In recent years, greater attention has been devoted to the solution of the direct analysis problem of vibrating beams in
the presence of multiple concentrated cracks [20–26]. In fact, a deeper insight and understanding of the latter problem is
fundamental to addressing the well-posed inverse formulation.
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Several studies introduced concentrated damages on beams by considering a local reduction of the flexural
stiffness. According to the latter model, and following the examples in [27–30], a crack can be macroscopically
represented as an elastic link connecting the two adjacent beam segments. More precisely, a model in which an internal
hinge endowed with a rotational spring, whose stiffness is dependent on the extent of damage, proved to be accurate and is
often used [31–36].

The effect of cracks on the dynamic properties of the beam has been mainly studied with particular attention given to
the characteristic equation of the natural frequencies. The first studies were based on the sub-division of the beam into
sub-beams between two subsequent cracks, requiring the enforcement of four continuity conditions at each cracked cross-
section [34,35]. According to this procedure, the characteristic equation of a beam with n cracks relies on the solution of a
determinant of order 4(n+1). More recently, Shifrin and Ruotolo [21] proposed the smooth function method, which reduced
the determinant to order n+1. However, from a computational viewpoint, the number of cracks is always influent. The
classical method, consisting of the beam sub-division, is also usually adopted to treat the case of vibration of stepped
beams showing abrupt variations of the cross-section as, for example, in [37]. However, the procedure proposed in [37] is
not competitive in the case of multiple discontinuities, particularly if closed form solutions are sought.

The approach proposed by Khiem and Lien [22] is based on the transfer matrix procedure, and can relate the state
variables at the end of each sub-beam with the values at the first end. In the latter method, the fulfilling of continuity
conditions at the cracked cross-sections allowed the authors to relate the state variables at both ends of the entire beam;
therefore, the characteristic equation of the natural frequencies is found by solving a determinant of order four. A thorough
parametric study on the influences of the intensity, position, and number of the cracks on the natural frequency was
conducted in [22].

Ruotolo and Surace [24] extended the smooth function method proposed in [21] and the transfer matrix method,
proposed by Khiem and Lien for bending vibrations [22], to the evaluation of the longitudinal natural frequencies of
vibrating bars with an arbitrary number of cracks. The transfer matrix method was also adopted successfully by Sorrentino
et al. [38] to treat the case of stepped Timoshenko beams, and in particular, to address the case of generalised damping
coefficients implying non-proportional damping.

An appealing approach is that proposed by Li [23], who utilised a properly derived basic solution exploiting the
fundamental solutions for each sub-beam and obtained the equation of the natural frequencies by solving a second-order
determinant. The expressions of the mode shapes are provided for each sub-beam, and since they are dependent on the
preceding values of the mode shapes, are given by means of recurrence formulas.

An extension of the procedure proposed by Li [23] to the case of beams with multiple cracks in the presence of an axial
force was proposed by Binici [25]. Once again, by selecting the appropriate fundamental solutions, the Eigen-value
equation can be conveniently determined by evaluating a second-order determinant, while the mode shapes are provided
by recurrence formulas in terms of the initial parameters that satisfy the boundary conditions.

The use of generalised functions (distributions) proved to be an efficient tool to treat discontinuous functions. Shifrin
and Ruotolo [21] accounted for the discontinuities in the displacement function and its derivatives by making use of
distributions. Yavari and co-workers [37,38] studied the static response of beams with multiple discontinuities, and used
the theory of distributions to show that a unique displacement function can be used to describe the behaviour of the entire
beam in the presence of discontinuities. A wide variety of cases involving discontinuities of the external loads, the cross-
section, the transversal displacements, and the rotation function have been studied with reference to both the
Euler–Bernoulli and the Timoshenko beams [39,40]. The procedure proposed in these papers to treat the governing
equations within the context of distributions has also been adopted for the case of columns in the presence of
discontinuities [41] and the case of Euler–Bernoulli and Timoshenko beams with jump discontinuities on discontinuous
foundations in a static context [42]. However, their solution procedure requires the enforcement of n continuity conditions,
and no explicit expressions of the solution are provided.

The structural problem studied by Yavari and Sarkani [41], i.e. the governing equation of a beam with jump
discontinuous flexural stiffness, was addressed by Horman and Oparnica in [43]. In this work, in accordance with [41], it is
proved that a differential equation governing the transversal displacement function of beams with jump discontinuous
coefficients, cannot possess a ‘‘distributional solution’’ in the context of the distributional product hierarchy (described by
the same authors in their appendix), if the solution displacement function shows a jump discontinuity at the same cross-
section. However, this work considers neither jump discontinuities of the flexural stiffness nor jump discontinuities of the
transversal displacements. Stankovic and Atanakovic [44] studied linear discontinuous differential equations, and provided
weak solutions to some mathematical models in mechanics [39–42] where discontinuities appear.

Very recently, Wang and Qiao [26] examined the case of vibrations of beams in the presence of any type of
discontinuities. They expressed the modal displacement function of the entire beam in the presence of n discontinuities by
means of a single function through the use of distributions. For each discontinuity, at a given location, a basic modal
displacement function starting at that point is introduced. The modal displacement function of the entire beam is obtained
as the superposition of these basic functions, and is given under the form of a recurrence expression; the equation of the
natural frequencies can be obtained by solving a second-order determinant. The recurrence expressions proposed by Li [23]
can be recovered as special cases of those proposed by Wang and Qiao [26].

In view of the above-mentioned literature, to the authors’ knowledge no explicit closed form solution for the vibration
mode shapes is available. On the contrary, the best results proposed in the literature are based on recurrence expressions,
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which require knowledge of the solution at the prior cracked cross-sections to evaluate the mode shape at specific cross-
sections [23,26].

The aim of the present work is to provide exact closed-form expressions for the mode shapes of the vibrating
Euler–Bernoulli beam with multiple concentrated cracks.

Within the framework of the distribution theory, a model for columns in the presence of multiple concentrated cracks
was presented in [45]. The authors proposed an integration procedure of the governing equation to obtain explicit solutions
of the critical load equation and of the corresponding buckling modes.

In this study, an extension of this procedure to treat the case of damaged vibrating beams in the presence of multiple
open concentrated cracks is studied. The cracks are modelled by means of the introduction of a sequence of Dirac’s delta
generalised functions in the flexural stiffness, which is equivalent to a sequence of concentrated elastic rotational springs
[45–48]. The governing equation for the proposed model is a differential equation with discontinuous coefficients.
However, the structure of the governing equation does not fall into the categories studied in [43,44].

A procedure to describe vibrations of the Euler–Bernoulli beam in the presence of discontinuities, including the case of
stepped beams, which relies on the knowledge of the closed-form expressions of the static Green’s functions, was proposed
by Failla and Santini [49]. The latter expressions are reported in the appendix of their paper and are directly obtained from
the closed-form solutions provided in [47]. However the dynamic solution procedure proposed in [49] leads to approximate
solutions for stepped beams, since a lumped-mass discretisation is used.

In the present work, a suitable procedure for the exact integration of the governing equation of the mode shapes in the
presence of singularities in the flexural stiffness, representing multiple concentrated cracks, is proposed. Explicit exact
closed-form solutions for the mode shapes, together with the explicit expressions of the natural frequency equations, are
obtained. The explicit expressions of the mode shapes are given as functions of four integration constants solely dependent
on the boundary conditions, and show the classical analytical structure of those concerning the undamaged beams.

The above-mentioned solution proposed for the vibration modes is of great help to researchers working towards the
evaluation of the dynamic response of structures composed of damaged beams through exact modal analysis by making
use of the dynamic stiffness matrix. Moreover, the results proposed in the manuscript can also be employed by those
authors dealing with nonlinear responses due to the phenomenon of closing cracks by means of a sequence of linear
analyses (piecewise linear analysis). Furthermore, the knowledge of the exact solution of the direct problem can also be
used to tackle inverse problems such as damage identification based on experimental measurements of the Eigen-modes of
beams subject to concentrated cracks.

A parametric analysis has been conducted for different boundary conditions in order to investigate the influence of the
number, position, and intensity of the cracks on the dynamical properties of the Euler–Bernoulli beam.
2. The vibration modes of the Euler–Bernoulli beam with multiple concentrated cracks

The basic concept adopted in this study is that concentrated cracks locally affect the flexural stiffness of the beam, and
that their influence can be modelled via generalised functions. More precisely, the Euler–Bernoulli beam in the presence of
a single crack concentrated at abscissa x0 along the axis can be modelled [46] using Dirac’s delta centred at x0 in the flexural
stiffness E(x)I(x) of the beam (the Young modulus E(x) multiplied by the moment of inertia I(x) of the cross-section) as
follows:

EðxÞIðxÞ ¼ E0I0½1� ĝdðx� x0Þ�, (1)

where E0I0 is the uniform flexural stiffness of the beam and ĝ is a parameter representative of the crack intensity. The
equivalence between the model proposed in Eq. (1) and the standard differential equations of a beam subject to a single
crack is shown in Appendix A, where the relationship between the parameter ĝ and the crack intensity is also specified.

In this section, the Euler–Bernoulli vibrating beam subject to multiple concentrated damages is considered by making
use of the model presented in Eq. (1). Specifically, an integration procedure able to provide the closed form expression of
the mode shapes is presented. According to the proposed model, the following expression of uniform flexural stiffness with
Dirac’s delta singularities is adopted in this study to treat an arbitrary number of concentrated cracks:

EðxÞIðxÞ ¼ E0I0 1�
Xn

i¼1

ĝidðx� x0iÞ

" #
, (2)

where n singularities, given by Dirac’s deltas centred at abscissa x0i, i ¼ 1,y,n, represent n concentrated cracks. The
parameters ĝi, i ¼ 1,y,n introduced in Eq. (2) multiplying the Dirac’s deltas are related to the rotational stiffness of an
equivalent internal spring, as specified in Appendix A.

In view of Eq. (2), the differential equation governing the free vibration of a beam with multiple concentrated cracks
may be given the following form:

E0I0 1�
Xn

i¼1

ĝidðx� x0iÞ

 !
u00ðx; tÞ

" #00
þm €uðx; tÞ ¼ 0, (3)
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where the apex indicates the standard derivative with respect to the spatial variable x, the superimposed bar indicates the
distributional derivative, and the superimposed dot indicates the standard derivative with respect to time t.

By introducing a non-dimensional coordinate x ¼ x/L, the flexural stiffness model introduced in Eq. (2) can be modified
as follows:

EðxÞIðxÞ ¼ E0I0 1�
Xn

i¼1

gidðx� x0iÞ

" #
. (4)

Therefore, the governing differential equation (3) can be written as

1�
Xn

i¼1

gidðx� x0iÞ

 !
u00ðx; tÞ

" #00
þ

mL4

E0I0
€uðx; tÞ ¼ 0. (5)

In Eq. (4) the property dðx� x0iÞ ¼ d½Lðx� x0iÞ� ¼ ð1=LÞdðx� x0iÞ of Dirac’s delta distribution has been utilised [50–55], and
the dimensionless parameters gi ¼ ĝi=L is introduced.

The displacement uðx; tÞ can be assumed as the product of the function f(x), which depends on the spatial coordinate x
and a time dependent function y(t), as follows:

uðx; tÞ ¼ yðtÞfðxÞ. (6)

Substitution of the separated form provided by Eq. (6) into the governing equation (5) yields the following differential
equation:

1�
Xn

i¼1

gidðx� x0iÞ

 !
f00ðxÞ

" #00
yðtÞ þ

mL4

E0I0
fðxÞ€yðtÞ ¼ 0. (7)

Eq. (7), after simple manipulations, can be written as

E0I0

mL4

1

fðxÞ
1�

Xn

i¼1

gidðx� x0iÞ

 !
f00ðxÞ

" #00
¼ �

€yðtÞ

yðtÞ
. (8)

Since the first member of Eq. (8) is a function of x, and the second member is a function of t, both members must be equal
to a constant value that is indicated as o2. Therefore the following two ordinary differential equations are obtained:

€yðtÞ þo2yðtÞ ¼ 0, (9)

1�
Xn

i¼1

gidðx� x0iÞ

 !
f00ðxÞ

" #00
�o2 mL4

E0I0
fðxÞ ¼ 0. (10)

Eq. (10), by performing the double differentiation with respect to x of the first term containing Dirac’s delta distribution,
and after simple algebra, takes the following form:

f0vðxÞ � a4fðxÞ ¼ BðxÞ, (11)

where the function B(x) collects all the terms with Dirac’s deltas and their derivatives as follows:

BðxÞ ¼
Xn

i¼1

gif
0v
ðxÞdðx� x0iÞ þ 2

Xn

i¼1

gif
000
ðxÞd0ðx� x0iÞ þ

Xn

i¼1

gif
00
ðxÞd00ðx� x0iÞ

" #
. (12)

In Eq. (11) the dimensionless frequency parameter a4 ¼ o2mL4=E0I0 is introduced.
The solution of the first governing differential equation given by Eq. (9) is well known and guarantees that the

dependence on time is harmonic. The second governing differential equation given by Eq. (11), for specified boundary
conditions, leads to the evaluation of the mode shapes and the corresponding frequencies.

In order to solve Eq. (11), it can be observed that the solution f(x) between two successive cracks must be of the same
form of the Eigen-mode of the undamaged beam; therefore, a solution for the overall beam can be assumed as a
combination of the standard trigonometric and hyperbolic functions in which the coefficients of the combination are
generalised functions according to the following general form:

fðxÞ ¼ d1ðxÞ sin axþ d2ðxÞ cos axþ d3ðxÞ sinh axþ d4ðxÞ cosh ax. (13)

The functions d1(x), d2(x), d3(x), d4(x) appearing in Eq. (13), correspondent to the integration constants in the case of
undamaged beams, are unknown generalised functions determined according to the procedure outlined in Appendix C. The
expressions of d1(x), d2(x), d3(x), d4(x), dependent on four integration constants C1, C2, C3, C4, are defined below:

d1ðxÞ ¼
1

2a
Xn

i

liMðx0iÞ cos ax0iUðx� x0iÞ þ C1,
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d2ðxÞ ¼ �
1

2a
Xn

i

liMðx0iÞ sin ax0iUðx� xoiÞ þ C2,

d3ðxÞ ¼
1

2a
Xn

i

liMðx0iÞ cosh ax0iUðx� x0iÞ þ C3,

d4ðxÞ ¼ �
1

2a
Xn

i

liMðx0iÞ sinh ax0iUðx� x0iÞ þ C4, (14)

where Uðx� x0iÞ is the well known unit step (Heaviside) function, which is the distributional derivative of Dirac’s delta
distribution, indicating a jump discontinuity at x0i, i ¼ 1; . . . ;n, and Mðx0iÞ are the values, evaluated at the cracked cross-
sections x0i, i ¼ 1; . . . ;n, of the following normalised function:

MðxÞ ¼ �M̂ðxÞ
L2

E0I0
, (15)

where M̂ðxÞ is the bending moment associated to the sought solution fðxÞ, which can be evaluated by multiplying the
adopted flexural stiffness function and the second derivative of the solution, as follows:

M̂ðxÞ ¼ �E0I0 1�
Xn

i¼1

gidðx� x0iÞ

" #
1

L2
f̄00ðxÞ. (16)

Moreover, in Eq. (14), the dimensionless parameters

li ¼
gi

ð1� AgiÞ
; i ¼ 1; . . . ;n (17)

are introduced and will be considered as ‘‘damage parameters’’, and adopted in the applications to represent the
concentrated damages. The definition of the constant A, appearing in Eq. (17) is discussed in Appendix C. The relation
between the parameters li, defined in Eq. (17), and the internal rotational spring stiffnesses equivalent to the cracks, can be
obtained, in view of Eq. (A.12) in Appendix A, by accounting for the spatial normalisation with respect to the length L of the
beam, as follows:

li ¼
E0I0

L

1

Keq;i
; i ¼ 1; . . . ;n. (18)

In addition, the relationship between the damage parameters li and the crack depth is shown in Appendix D.
The solution fðxÞ provided by Eq. (13), using Eq. (14), after simple algebra becomes

fðxÞ ¼
1

2a
Xn

i¼1

liMðx0iÞ½sin aðx� x0iÞ þ sinh aðx� x0iÞ�Uðx� x0iÞ

þ C1 sin axþ C2 cos axþ C3 sinh axþ C4 cosh ax, (19)

where the quantities Mðx0iÞ are still unknown.
The normalised bending moment MðxÞ given by Eq. (15) is a continuous function, which can be expressed, via Eq. (16)

and the second distributional derivative of Eq. (19), as

MðxÞ ¼ 1�
Xn

i¼1

gkdðx� x0kÞ

" #

�
a
2

Xn

k¼1

liMðx0iÞ½� sin aðx� x0iÞ þ sinh aðx� x0iÞ�Uðx� x0iÞ þ
Xn

i¼1

liMðx0iÞdðx� x0iÞ

(

�C1a2 sin ax� C2a2 cos ax� C3a2 sinh ax� C4a2 cosh ax
)

. (20)

The value Mðx0jÞ at the generic cracked cross-section x0j can be selected by applying the distributional product with Dirac’s
delta [50–55] to the bending moment continuous function provided by Eq. (20), as

Mðx0jÞ ¼

Z 1
�1

MðxÞdðx� x0jÞdx

¼
a
2

Xj�1

i¼1

liMðx0iÞ½� sin aðx0j � x0iÞ þ sinhaðx0j � x0iÞ�

� C1a2 sin ax0j � C2a2 cos ax0j � C3a2 sinh ax0j � C4a2 cosh ax0j. (21)
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It is worth noting that the expression of Mðx0jÞ, provided by Eq. (21), involves the values Mðx0iÞ, for i ¼ 1; . . . ; j� 1. The
recurrence expression of the bending moments at the cracked cross-sections Mðx0iÞ, for j ¼ 1; . . . ;n, provided by Eq. (21),
can be given by the following explicit form:

Mðx0jÞ ¼ C1mj þ C2uj þ C3zj þ C4Zj, (22)

where

mj ¼
a
2

Xj�1

i¼1

limi½� sin aðx0j � x0iÞ þ sinh aðx0j � x0iÞ� � a2 sin ax0j,

uj ¼
a
2

Xj�1

i¼1

liui½� sin aðx0j � x0iÞ þ sinh aðx0j � x0iÞ� � a2 cos ax0j;

zj ¼
a
2

Xj�1

i¼1

lizi½� sin aðx0j � x0iÞ þ sinh aðx0j � x0iÞ� þ a2 sinh ax0j,

Zj ¼
a
2

Xj�1

i¼1

liZi½� sin aðx0j � x0iÞ þ sinh aðx0j � x0iÞ� þ a2 cosh ax0j. (23)

The solution of the Eigen-mode governing Eq. (11) is given by Eq. (19), and through Eq. (22), can be written in the following
explicit form:

fðxÞ ¼ C1
1

2a
Xn

i¼1

limi½sin aðx� x0iÞ þ sinh aðx� x0iÞ�Uðx� x0iÞ þ sin ax
( )

þ C2
1

2a
Xn

i¼1

liui½sin aðx� x0iÞ þ sinh aðx� x0iÞ�Uðx� x0iÞ þ cos ax
( )

þ C3
1

2a
Xn

i¼1

lizi½sin aðx� x0iÞ þ sinh aðx� x0iÞ�Uðx� x0iÞ þ sinh ax
( )

þ C4
1

2a
Xn

i¼1

liZi½sin aðx� x0iÞ þ sinh aðx� x0iÞ�Uðx� x0iÞ þ cosh ax
( )

, (24)

where the terms mi; ni; Bi;Zi are given by Eqs. (23). The integration constants C1;C2;C3;C4 can be easily evaluated by
imposing the relevant boundary conditions. The first and second derivatives of the Eigen-mode can be obtained by means
of single and double differentiation of Eq. (24) by making use of the distributional derivatives of the unit step (Heaviside)
function.

The parameters li chosen in Eq. (24) to represent the extent of the concentrated damages allowed the formulation of the
closed-form expressions for the vibration modes, regardless of the values adopted for the parameters gi and the constant A,
which do not need to be specified.

In other words, the intensities of concentrated cracks represented by the rotational stiffness Keq of equivalent springs,
according to one of the models presented in the literature [31–36,56,57], are given by the parameters li evaluated as in
Eq. (18).
3. The frequency equation of the multi-cracked beam

The multi-cracked beam frequency equation is derived by simply enforcing the standard boundary conditions; this
method even works for the general case of rotational and translational spring supports. In this section the closed-form
solution presented in Eq. (24) is used for cases of simply supported (pinned–pinned, PP), cantilever (clamped–free, CF),
clamped–clamped (CC), and free–free (FF) Euler–Bernoulli beam. The frequency equations are derived and numerically
solved in order to obtain the frequencies of the considered multi-cracked beams, and the corresponding explicit
expressions of the vibration modes. Additionally, a parametric study for different numbers, positions, and values of the
damage parameters is presented.

The damage parameters li were chosen to be representative of the damage intensities, and the correspondent crack
depth can be easily inferred through existing damage models as reported in Appendix D.
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3.1. Simply supported beam

The boundary conditions of the simply supported beam can be expressed as follows:

fð0Þ ¼ 0; f00ð0Þ ¼ 0; fð1Þ ¼ 0; f00ð1Þ ¼ 0. (25)

Accounting for Eqs. (24) and (25), the following conditions for the integration constants C1;C2;C3;C4, are written as

C2 ¼ C4 ¼ 0, (26)

1

2a
Pn
i¼1

limiSiða;1Þ þ sin a 1

2a
Pn
j¼1

ljzjSjða;1Þ þ sinh a

1

2a
Pn
i¼1

limiS
0
iða;1Þ � a sin a 1

2a
Pn
j¼1

ljzjS
0
jða;1Þ þ a sinh a

2
66664

3
77775

C1

C3

" #
¼

0

0

� �
, (27)

where for simplicity the operator Siða; xÞ has been introduced as follows:

Siða; xÞ ¼ ½sin aðx� x0iÞ þ sinh aðx� x0iÞ�. (28)

The frequency equation of the simply supported multi-cracked beam is obtained by evaluating the second-order
determinant of the system of Eq. (27) as follows:

sin a sinh aþ 1

2a
Xn

i¼1

limi sin að1� x0iÞ sinh aþ 1

2a
Xn

i¼1

lizi sinh að1� x0iÞ sin a

�
1

2a2

Xn

i¼1

Xn

j¼1

limiljzi sinh að1� x0iÞ sin að1� x0jÞ ¼ 0 (29)

the zeros of this equation indicate the values of the frequency parameters ak. If all the damage parameters li are zero, i.e.
no crack occurs, Eq. (29) reduces to the frequency equation of the undamaged simply supported beam.

By substituting the frequency parameter in the boundary condition system of Eq. (27), the value of the integration
constants that provide the vibration mode of the simply supported multi-cracked beam can be obtained as follows:

C3 ¼ 1; C1 ¼ �

1

2a
Pn

i¼1liziSiðak;1Þ þ sinh ak

1

2a
Pn

i¼1limiSiðak;1Þ þ sin ak

. (30)

By replacing into Eq. (24) the values of the integration constants given by Eqs. (26) and (30), the closed form expressions of
the vibration modes of the simply supported multi-cracked beam are obtained as follows:

fkðxÞ ¼ �

1

2ak

Pn
i¼1liziSiðak;1Þ þ sinh ak

1

2ak

Pn
i¼1limiSiðak;1Þ þ sin ak

1

2ak

Xn

i¼1

limiSiðak; xÞUðx� x0iÞ þ sin akx

( )

þ
1

2ak

Xn

i¼1

liziSiðak; xÞUðx� x0iÞ þ sinh akx. (31)

3.2. Cantilever beam

The boundary conditions of the cantilever beam can be expressed as follows:

fð0Þ ¼ 0; f0ð0Þ ¼ 0; f00ð1Þ ¼ 0; f000ð1Þ ¼ 0, (32)

Accounting for Eqs. (32) and (24) leads to the following conditions for the integration constants C1, C2, C3, C4:

C4 ¼ �C2; C3 ¼ �C1, (33)

1

2a
Pn
i¼1

liðmi � ziÞS
0
iða;1Þ � ðsin aþ sinh aÞ 1

2a
Pn
i¼1

liðui � ZiÞS
0
iða;1Þ � ðcos aþ cosh aÞ

1

2a
Pn
i¼1

liðmi � ziÞS
00
i ða;1Þ � a

2ðcos aþ cosh aÞ 1

2a
Pn
i¼1

liðui � ZiÞS
00
i ða;1Þ þ a

2ðsin a� sinh aÞ

2
66664

3
77775

C1

C2

" #
¼

0

0

� �
, (34)

where S0iða;1Þ and S00i ða;1Þ are the first and second derivative, respectively, evaluated at x ¼ 1, of the Siða; xÞ function defined
in Eq. (28). The evaluation of the determinant of Eq. (34) yields the frequency equation, the zeros of which denote the
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frequency parameters. Substituting the frequency parameters in the boundary condition system of Eq. (34) results in the
integration constants that provide the vibration modes of the cantilever multi-cracked beam.

3.3. Clamped–clamped beam

For a clamped–clamped beam the following boundary conditions must be enforced

fð0Þ ¼ 0; f0ð0Þ ¼ 0; fð1Þ ¼ 0; f0ð1Þ ¼ 0. (35)

Using Eq. (24), the conditions for the integration constants C1, C2, C3, C4 given by Eqs. (35), can be written as

C3 ¼ �C1; C4 ¼ �C2, (36)

1

2a
Pn
i¼1

liðmi � ziÞSiða;1Þ þ sin a� sinh a 1

2a
Pn
i¼1

liðui � ZiÞSiða;1Þ þ cos a� cosh a

1

2a
Pn
i¼1

liðmi � ziÞS
0
iða;1Þ þ aðcos a� cosh aÞ 1

2a
Pn
i¼1

liðui � ZiÞS
0
iða;1Þ � aðsin a� sinh aÞ

2
66664

3
77775

C1

C2

" #
¼

0

0

� �
. (37)

The zero of the second-order determinant gives the frequency parameters of the clamped–clamped beam, and after
substitution into the system of Eq. (37), the corresponding eigenvector can be expressed in closed form.

3.4. Free–free beam

For a free–free beam, the boundary conditions at the left and right ends may be written as

f00ð0Þ ¼ 0; f000ð0Þ ¼ 0; f00ð1Þ ¼ 0; f000ð1Þ ¼ 0. (38)

The conditions (38), by making use of the closed-form expression given by Eq. (24), lead to the following expressions for
the integration constants:

C3 ¼ C1; C4 ¼ C2, (39)

1

2a
Pn
i¼1

liðmi þ ziÞS
0
ið1� x0iÞ � aðsin aþ sinh aÞ 1

2a
Pn
i¼1

liðui þ ZiÞS
0
ið1� x0iÞ � aðcos aþ cosh aÞ

1

2a
Pn
i¼1

liðmi þ ziÞS
00
i ð1� x0iÞ � a2ðcos aþ cosh aÞ 1

2a
Pn
i¼1

liðui þ ZiÞS
00
i ð1� x0iÞ þ a2 sin aþ sinh að Þ

2
66664

3
77775

C1

C2

" #
¼

0

0

� �
. (40)

By setting the system matrix determinant of Eq. (40) equal to zero, the expression of the exact frequency equation can be
obtained.

Once the frequency parameter has been obtained, the solution of the boundary condition system (39) and (40) gives the
value of the integration constants that provide the vibration modes of the free–free multi-cracked beam, which are written
as

C1 ¼ WkC2; C3 ¼ C1; C4 ¼ C2, (41)

where

Wk ¼ �

1

2a
Pn

i¼1liðui þ ZiÞ½� sin akð1� x0iÞ þ sinh akð1� x0iÞ� � cos ak þ cosh ak

1

2a
Pn

i¼1liðmi þ ziÞf½� sin akð1� x0iÞ þ sinh akð1� x0iÞ� � sin ak þ sinh ak

. (42)

By substituting the values of the integration constants given by Eqs. (41) and (42) into Eq. (24), the closed-form expressions
of the vibration modes of the free–free beam with n concentrated cracks can be easily obtained.

4. Numerical applications

The applications reported in this section are for the above considered damaged beams for different numbers of
concentrated cracks characterised by different positions and intensities.

Fig. 1 displays the frequency parameter of beams for different numbers of equally spaced identical concentrated
damages as a function of the damage intensity parameter l. The cases corresponding to the values n ¼ 1;3;5;10;50 have
been considered in a range of the damage intensity parameter between zero and 10. The frequency parameter decreases
rapidly at lower values of the damage parameters, which more realistically models moderate damages.

The effect of the position of a single crack in the beams is investigated in Fig. 2a, where the frequency parameter is
reported as a function of the crack position x0 for the values of the damage parameter l ¼ 2, correspondent to a significant
damage. The simply supported and free–free beams exhibit similar behaviours; that is when the crack moves from the
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Fig. 1. First frequency parameters of multi-cracked beams for different numbers n of equally spaced concentrated damages (n ¼ 1, 3, 5, 10, 50) versus the

damage parameters li ¼ l; i ¼ 1; . . . ;n. PP (pinned–pinned); CC (clamped–clamped); CF (clamped–free); FF (free–free).

Fig. 2. First frequency parameter versus the crack positions for the value of the damage parameters li ¼ 2: (a) single cracked beams; (b) beams with two

symmetric cracks. PP (pinned–pinned); CC (clamped–clamped); CF (clamped–free); FF (free–free).

S. Caddemi, I. Caliò / Journal of Sound and Vibration 327 (2009) 473–489 481
boundary ends towards the middle cross-section, the frequency parameter decreases. The clamped–clamped beam
responds differently, as the frequency parameter increases when the crack moves from the clamped ends towards the
cross-section where the inflection point of the undamaged beam vibration mode is encountered, reaching the frequency of
the undamaged beam. The frequency then decreases when the crack moves towards the middle cross-section. As expected,
the cantilever beam frequency parameter increases when the crack moves from the clamped towards the free end.

The effect of the position of two cracks equidistant x0 from the boundary ends of the beams and characterised by the
same damage index, l ¼ 2, is investigated in Fig. 2b, where the frequency parameter is reported as a function of the crack
distance x0 from the boundary end. For each considered case, the curves appear to be similar to the case concerning a single
moving crack. The frequency parameter decreases as the two cracks simultaneously approach the middle of the beam in
the PP and FF cases. Analogous to the single crack case, the CC beam curve assumes the value of the undamaged beam when
the cracks are both collocated at the inflection points of the vibration mode of the beam without cracks. The frequency
parameter of the CF beam continuously increases as the cracks move simultaneously towards the middle cross-section of
the beam.

The vibration mode variability of the previously considered beams subject to two moving cracks as a function of the
crack positions x0 are reported in Fig. 3 as 3D-graphs. It can be observed that the crack on the free side of the cantilever
beam has negligible impact on its mode shape.

Finally, Fig. 4 shows the fifth vibration mode shape for the considered boundary conditions, which are plotted for a
beam subject to 10 cracks of equally high intensity l ¼ 10.
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Fig. 3. Vibration mode variability in the presence of two symmetric moving cracks for the value of the damage parameters li ¼ 2. PP (pinned–pinned); CC

(clamped–clamped); CF (clamped–free); FF (free–free).

Fig. 4. Fifth vibration mode in the presence of 10 cracks for the value of the damage parameters li ¼ l ¼ 10. PP (pinned–pinned); CC (clamped–clamped);

CF (clamped–free); FF (free–free).

S. Caddemi, I. Caliò / Journal of Sound and Vibration 327 (2009) 473–489482
5. Conclusions

In this paper, the exact closed form expressions for the vibration modes of the uniform Euler–Bernoulli beams in the
presence of multiple concentrated cracks, modelled using Dirac’s deltas, were derived incorporating the classical analytical
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structure of the undamaged beams. The vibration mode shapes are explicitly dependent on the concentrated cracks present
along the beam, and were defined as functions of only four integration constants, which are determined by the standard
boundary conditions. The presented solution allows the frequency equation for any number, position, and intensity of the
cracks to be derived for any beam by enforcing the boundary conditions at the ends of the beam without additional
continuity conditions. A numerical study of multi-cracked Euler–Bernoulli beams subjected to different boundary
constraints, for different numbers, positions, and damage intensities was developed and discussed.

The analytical structure proposed to express the vibration mode is fundamental for the evaluation of the dynamic
stiffness matrix of multi-cracked framed structures, which is a subject of a forthcoming paper devoted to performing exact
modal analyses of damaged framed structures.

Moreover, the exact explicit expression of the vibration modes formulated for the case of open cracks in this work are
very promising if employed in the evaluation of the nonlinear response of closing cracks; in fact, in this case the nonlinear
step-by-step analysis is the focus of current research conducted by the authors, and is performed by means of a sequence of
linear analyses (piecewise linear analysis).

Furthermore, the proposed integration procedure can also be extended to the case of Timoshenko beams in order to
obtain closed-form expressions of the relevant vibration modes. Finally, the model adopted in this study, once extended to
the case of shear-deformable beams, will allow the inclusion of discontinuities in the transversal displacement function.

Appendix A. Equivalence between the proposed model for Euler–Bernoulli beams in the presence of concentrated cracks
and the standard governing equations

For convenience, the equivalence between the proposed model adopted in this work, and the standard governing
equations is shown in the static case and for a single crack.

The standard governing equations of a beam with variable bending stiffness EðxÞIðxÞ having a concentrated crack at
abscissa x0, represented by the equivalent rotational stiffness Keq, under a transversal static load q(x), are given as follows:

½EðxÞIðxÞu00ðxÞ�00 ¼ qðxÞ in ð0; x0Þ [ ðx0; LÞ, (A.1)

Duðx0Þ ¼ Du00ðx0Þ ¼ Du000ðx0Þ ¼ 0, (A.2)

KeqDu0ðx0Þ ¼ Eðx0ÞIðx0Þu
00ðx0Þ, (A.3)

where u(x) is the transversal displacement function, the apex indicates the standard derivative with respect to the spatial
variable x, and D indicates a jump discontinuity of the subsequent function.

The solution u(x) of the governing Eqs. (A.1)–(A.3) is expected to be a continuous function with discontinuous derivative
at x0 as imposed by Eq. (A.3); hence, to address this type of function, the concept of a distributional derivative, with respect
to the spatial variable x, will now be considered and is indicated with a superimposed bar.

The distributional derivative u0ðxÞ of u(x) having a discontinuity can be obtained as follows:

u0ðxÞ ¼ u0ðxÞ þDuðx0Þdðx� x0Þ, (A.4)

where u0(x) is the standard derivative of u(x) in ð0; x0Þ [ ðx0; LÞ and d(x�x0) is the well known Dirac’s delta distribution.
For the case under study, since u(x) is a continuous function, Duðx0Þ ¼ 0 and u0ðxÞ ¼ u0ðxÞ. However, the second derivative

u00ðxÞ is

u00ðxÞ ¼ u00ðxÞ þ Du0ðx0Þdðx� x0Þ. (A.5)

Starting from Eq. (A.5), an alternative formulation for the governing equation of the Euler–Bernoulli beam that includes
the cracked cross-section can be obtained. This is achieved by introducing the definition of the product of two Dirac’s deltas
as defined by Bagarello [57,58]: dðx� x0Þdðx� x0Þ ¼ Adðx� x0Þ. In fact, if we multiply both parts of Eq. (A.5) by a function
containing a Dirac’s delta such as jðxÞ½1� ĝdðx� x0Þ� with j(x) regular function, we obtain

jðxÞ½1� ĝdðx� x0Þ�u
00ðxÞ ¼ jðxÞ½1� ĝdðx� x0Þ�½u

00ðxÞ þ Du0ðx0Þdðx� x0Þ�

¼ jðxÞu00ðxÞ½1� ĝdðx� x0Þ� þjðxÞDu0ðx0Þ½1� ĝA�dðx� x0Þ. (A.6)

Eq. (A.6), in view of Eq. (A.3), leads to

jðxÞ½1� ĝdðx� x0Þ�u
00ðxÞ ¼ jðxÞu00ðxÞ½1� ĝdðx� x0Þ� þjðxÞ

Eðx0ÞIðx0Þ

Keq
u00ðx0Þ½1� ĝA�dðx� x0Þ

¼ jðxÞu00ðxÞ þjðx0Þu
00ðx0Þ �ĝþ

Eðx0ÞIðx0Þ

Keq
ð1� ĝAÞ

� �
dðx� x0Þ. (A.7)

Now, if we choose the parameter ĝ such that

ĝ ¼ Eðx0ÞIðx0Þ

Keq þ AEðx0ÞIðx0Þ
, (A.8)
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then Eq. (A.7) can be rewritten as

jðxÞ½1� ĝdðx� x0Þ�u
00ðxÞ ¼ jðxÞu00ðxÞ. (A.9)

Finally, by assuming that j(x) is coincident with the bending stiffness EðxÞIðxÞ, and utilising double standard differentiation
of Eq. (A.9), we obtain

½EðxÞIðxÞð1� ĝdðx� x0ÞÞu
00ðxÞ�00 ¼ ½EðxÞIðxÞu00ðxÞ�00. (A.10)

Eq. (A.10), in view of Eq. (A.1), yields

½EðxÞIðxÞð1� ĝdðx� x0ÞÞu
00ðxÞ�00 ¼ qðxÞ. (A.11)

The model in Eq. (A.11) can be adopted to treat the case of concentrated cracks. In fact, by incorporating Eq. (A.8), the
stiffness of the rotational spring equivalent to the crack is as follows:

Keq ¼
1� ĝA

ĝ
Eðx0ÞIðx0Þ, (A.12)

where ĝ and A are dimensional parameters (as length and length�1, respectively).
The governing equation under the form presented in Eq. (A.11) is equivalent to the standard form reported in Eqs.

(A.1)–(A.3).
In addition, to show that the proposed model retains the properties of the classical formulation, the evaluation of the

strain energy is pursued in Appendix B, where it is proved that when the external load induces a zero bending moment at
the cracked cross-section, the solution of the undamaged beam is recovered.

The beam model with a single concentrated crack in Eq. (A.11) has been extended to the case of multiple cracks and to
different types of discontinuities in [47], where closed-form solutions have been obtained in a static context.

The present work provides an extension to the dynamic field and for multiple cracks of the model presented in Eq.
(A.11), which is for the case of an internal hinge endowed with a rotational spring representative of a concentrated crack in
the static context.
Appendix B. The strain energy of a beam having a concentrated crack

According to the model presented in Eq. (A.11), the flexural stiffness of the Euler–Bernoulli beam in the presence of a
single crack is written as

EðxÞIðxÞ ¼ EðxÞIðxÞ½1� ĝdðx� x0Þ�, (B.1)

where EðxÞIðxÞ is a regular function representing the flexural stiffness in ð0; x0Þ [ ðx0; LÞ.
The evaluation of the strain energy of the cracked beam can be performed as follows:

P ¼
1

2

Z L

0
w̄ðxÞEðxÞIðxÞ w̄ðxÞdx, (B.2)

where w̄ðxÞ ¼ �u00ðxÞ is the curvature function evaluated as the second distributional derivative of the transversal
displacement u(x), evaluated using Eq. (A.5).

Substitution of Eqs. (A.5) and (B.1) into Eq. (B.2) gives

P ¼
1

2

Z L

0
½u00ðxÞ þ Du0ðx0Þdðx� x0Þ�EðxÞIðxÞ½1� ĝdðx� x0Þ�½u

00ðxÞ þDu0ðx0Þdðx� x0Þ�dx. (B.3)

The expression of the discontinuity of the rotation function given by Eq. (A.3) is utilised so that Eq. (B.3) can be written as
follows:

P ¼
1

2

Z L

0
u00ðxÞ þ

Eðx0ÞIðx0Þ

Keq
u00ðx0Þdðx� x0Þ

� �
EðxÞIðxÞ½1� ĝdðx� x0Þ�

� u00ðxÞ þ
Eðx0ÞIðx0Þ

Keq
u00ðx0Þdðx� x0Þ

� �
. (B.4)

The adoption of the definition of the product of two Dirac’s deltas provided in [58,59] leads to

P ¼
1

2

Z L

0
u00ðxÞ þ

Eðx0ÞIðx0Þ

Keq
u00ðx0Þdðx� x0Þ

� �

� EðxÞIðxÞ u00ðxÞ þ u00ðxoÞ �ĝþ
Eðx0ÞIðx0Þ

Keq
� ĝ Eðx0ÞIðx0Þ

Keq
A

� �
dðx� x0Þ

� �
dx. (B.5)
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The choice of ĝ given by Eq. (A.8) means that the strain energy P can be given by the following form:

P ¼
1

2

Z L

0
u00ðxÞ þ

Eðx0ÞIðx0Þ

Keq
u00ðx0Þdðx� x0Þ

� �
EðxÞIðxÞu00ðxÞdx

¼
1

2

Z x0

0
u00ðxÞEðxÞIðxÞu00ðxÞdxþ

1

2

Z L

x0

u00ðxÞEðxÞIðxÞu00ðxÞdxþ
1

2
Eðx0ÞIðx0Þ

u00ðx0Þ

Keq
Eðx0ÞIðx0Þu

00ðx0Þ (B.6)

which is the correct strain energy of the classical model of a cracked beam where the third term at the right side indicates
the contribution of the internal spring equivalent to the damage.

Furthermore, Eq. (B.6) shows that when an external load induces a zero curvature at x0 (i.e. zero bending moment at the
cracked cross-section), the solution of the undamaged beam is easily recovered.

Appendix C. The integration procedure

The appendix presents a procedure to determine the functions d1ðxÞ; d2ðxÞ; d3ðxÞ; d4ðxÞ, which appear in Eq. (13), and are
used to define the integral of the Eigen-mode governing Eq. (11).

Eq. (13) is given here for convenience:

fðxÞ ¼ d1ðxÞ sin axþ d2ðxÞ cos axþ d3ðxÞ sinh axþ d4ðxÞ cosh ax. (C.1)

The d1ðxÞ; d2ðxÞ; d3ðxÞ; d4ðxÞ functions, multiplying the basic trigonometric and transcendental functions, are unknown
generalised functions whose evaluation requires four independent conditions. The first condition is derived by satisfying
the governing differential equation (11), which is given below for clarity:

f0vðxÞ � a4fðxÞ ¼ BðxÞ, (C.2)

where

BðxÞ ¼
Xn

i¼1

gif
0v
ðxÞdðx� x0iÞ þ 2

Xn

i¼1

gif
000
ðxÞd0ðx� x0iÞ þ

Xn

i¼1

gif
00
ðxÞd00ðx� x0iÞ

" #
. (C.3)

Eq. (C.2) will be proposed later under an explicit form as functions of only the first derivatives of d1ðxÞ; d2ðxÞ; d3ðxÞ; d4ðxÞ.
The remaining conditions can be obtained by requiring that the fourth derivative of the Eigen-mode appearing in

Eq. (C.2) involves only the first distributional derivatives of the unknown functions d1ðxÞ; d2ðxÞ; d3ðxÞ; d4ðxÞ, as outlined in
what follows.

Distributional differentiation of Eq. (C.1) leads to

f0ðxÞ ¼ d1ðxÞa cos ax� d2ðxÞa sin axþ d3ðxÞa cosh axþ d4ðxÞa sinh ax

þ d01ðxÞ sin axþ d02ðxÞ cos axþ d03ðxÞ sinh axþ d04ðxÞ cosh ax. (C.4)

By imposing the condition that

d01ðxÞ sin axþ d02ðxÞ cos axþ d03ðxÞ sinh axþ d04ðxÞ cosh ax ¼ 0 (C.5)

the second distributional derivative of fðxÞ is obtained as

f00ðxÞ ¼ � d1ðxÞa2 sin ax� d2ðxÞa2 cos axþ d3ðxÞa2 sinh axþ d4ðxÞa2 cosh ax

þ d01ðxÞa cos ax� d02ðxÞa sin axþ d03ðxÞa cosh axþ d04ðxÞa sinh ax. (C.6)

Furthermore, by imposing the condition that

d01ðxÞa cos ax� d02ðxÞa sin axþ d03ðxÞa cosh axþ d04ðxÞa sinh ax ¼ 0 (C.7)

the third distributional derivative of fðxÞ is obtained as

f000ðxÞ ¼ � d1ðxÞa3 cos axþ d2ðxÞa3 sin axþ d3ðxÞa3 cosh axþ d4ðxÞa3 sinh ax

� d01ðxÞa2 sin ax� d02ðxÞa2 cos axþ d03ðxÞa2 sinh axþ d04ðxÞa2 cosh ax. (C.8)

Finally, by imposing the additional condition that

�d01ðxÞa2 sin ax� d02ðxÞa2 cos axþ d03ðxÞa2 sinh axþ d04ðxÞa2 cosh ax (C.9)

the fourth distributional derivative of fðxÞ is obtained as

f0vðxÞ ¼ d1ðxÞa4 sin axþ d2ðxÞa4 cos axþ d3ðxÞa4 sinh axþ d4ðxÞa4 cosh ax

� d01ðxÞa3 cos axþ d02ðxÞa3 sin axþ d03ðxÞa3 cosh axþ d04ðxÞa3 sinh ax. (C.10)
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The governing Eq. (C.2), to be fulfilled by the desired solution, can be obtained under an explicit form involving only the
first distributional derivatives of the d1ðxÞ; d2ðxÞ; d3ðxÞ; d4ðxÞ functions by making use of Eqs. (C.1) and (C.10) as follows:

�d01ðxÞa3 cos axþ d02ðxÞa3 sin axþ d03ðxÞa3 cosh axþ d04ðxÞa3 sinh ax ¼ BðxÞ. (C.11)

Incorporating the assumed conditions given by Eqs. (C.5), (C.7), (C.9), and (C.11) the generalised functions
d1ðxÞ; d2ðxÞ; d3ðxÞ and d4ðxÞ can be obtained by integrating the following system of four differential equations:

d01ðxÞ sin axþ d02ðxÞ cos axþ d03ðxÞ sinh axþ d04ðxÞ cosh ax ¼ 0;

d01ðxÞa cos ax� d02ðxÞa sin axþ d03ðxÞa cosh axþ d04ðxÞa sinh ax ¼ 0;

�d01ðxÞa2 sin ax� d02ðxÞa2 cos axþ d03ðxÞa2 sinh axþ d04ðxÞa2 cosh ax ¼ 0;

�d01ðxÞa3 cos axþ d02ðxÞa3 sin axþ d03ðxÞa3 cosh axþ d04ðxÞa3 sinh ax ¼ BpðxÞ:

8>>>>><
>>>>>:

(C.12)

The system of differential equations (C.12), in combination with Eq. (C.3), can be written under the following uncoupled
form:

d01ðxÞ ¼ �
cos ax

2a3
f0vðxÞ

Xn

i¼1

gidðx� x0iÞ þ 2f000ðxÞ
Xn

i¼1

gid
0
ðx� x0iÞ þf00ðxÞ

Xn

i¼1

gid
00
ðx� x0iÞ

" #
,

d02ðxÞ ¼
sin ax

2a3
f0vðxÞ

Xn

i¼1

gidðx� x0iÞ þ 2f000ðxÞ
Xn

i¼1

gid
0
ðx� x0iÞ þf00ðxÞ

Xn

i¼1

gid
00
ðx� x0iÞ

" #
,

d03ðxÞ ¼
cosh bx

2a3
f0vðxÞ

Xn

i¼1

gidðx� x0iÞ þ 2f000ðxÞ
Xn

i¼1

gid
0
ðx� x0iÞ þ f00ðxÞ

Xn

i¼1

gid
00
ðx� x0iÞ

" #
,

d04ðxÞ ¼ �
sinh bx

2a3
f0vðxÞ

Xn

i¼1

gidðx� x0iÞ þ 2f000ðxÞ
Xn

i¼1

gid
0
ðx� x0iÞ þ f00ðxÞ

Xn

i¼1

gid
00
ðx� x0iÞ

" #
. (C.13)

Integration of Eqs. (C.13) leads to

d1ðxÞ ¼
1

2a

Z
f00ðxÞ cos ax

Xn

i¼1

gidðx� x0iÞ

" #
þ C1,

d2ðxÞ ¼ �
1

2a

Z
f00ðxÞ sin ax

Xn

i¼1

gidðx� x0iÞ

" #
þ C2,

d3ðxÞ ¼
1

2a

Z
f00ðxÞ cosh ax

Xn

i¼1

gidðx� x0iÞ

" #
þ C3,

d4ðxÞ ¼ �
1

2a

Z
f00ðxÞ sinh ax

Xn

i¼1

gidðx� xoiÞ

" #
þ C4, (C.14)

where C1;C2;C3;C4 are integration constants. The functions d1ðxÞ, d2ðxÞ, d3ðxÞ, and d4ðxÞ provided by Eqs. (C.14) depend on

integrals of the function f00ðxÞ multiplied by continuous functions, and by Dirac’s delta generalised functions.

To evaluate these integrals, it is important to note that the function f00ðxÞ appearing in Eqs. (C.14), under the flexural
stiffness model adopted in this work, is a singular function that is related to the continuous function of the flexural moment

M̂ðxÞ, and is associated with the solution via the following expression:

M̂ðxÞ ¼ �E0I0 1�
Xn

i¼1

gidðx� x0iÞ

" #
f00ðxÞ

1

L2
. (C.15)

The continuous function of the flexural moment M̂ðxÞ can be normalised for convenience:

MðxÞ ¼ �M̂ðxÞ
L2

E0I0
¼ 1�

Xn

i¼1

gidðx� x0iÞ

" #
f00ðxÞ. (C.16)

Multiplying both parts of Eq. (C.16) by f ðxÞdðx� x0jÞ, with f ðxÞ as a continuous function, followed by integration and some
algebra, leads to Z

f00ðxÞf ðxÞgjdðx� x0jÞdx ¼ Mðx0jÞf ðx0jÞljUðx� x0jÞ, (C.17)
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in which the following definition of the product of two Dirac’s deltas have been used [58]:

dðx� x0jÞdðx� x0kÞ ¼
Adðx� x0jÞ; j ¼ k;

0; jak;

(
(C.18)

where a set of values for the quantity A, for which Eq. (C.18) holds, is defined by Bagarello [59].
In Eq. (C.17) the following dimensionless parameters:

li ¼
gi

ð1� AgiÞ
; i ¼ 1; . . . ;n (C.19)

have been introduced and will be considered as ‘‘damage parameters’’ and adopted in the applications to represent the
concentrated damages.

The functions d1ðxÞ, d2ðxÞ, d3ðxÞ, d4ðxÞ, provided by Eqs. (C.14) and using Eq. (C.17), can now be written as follows:

d1ðxÞ ¼
1

2a
Xn

i

liMðx0iÞ cos ax0iUðx� x0iÞ þ C1,

d2ðxÞ ¼ �
1

2a
Xn

i

liMðx0iÞ sin ax0iUðx� x0iÞ þ C2,

d3ðxÞ ¼
1

2a
Xn

i

liMðx0iÞ cosh ax0iUðx� x0iÞ þ C3,

d4ðxÞ ¼ �
1

2a
Xn

i

liMðx0iÞ sinh ax0iUðx� x0iÞ þ C4. (C.20)

Substituting Eqs. (C.20) into Eq. (C.1) provides a suitable form of the Eigen-mode to be used to obtain the explicit closed-
form solution of the problem of interest.

Appendix D. Relationship between the damage parameter and the crack depth

In this appendix the damage parameters li, which represent concentrated damages and related to the singularity
parameters gi, are shown to be related to the depth of concentrated cracks by incorporating some classical crack models
provided in the literature.

Eq. (18) gives the relationship between the damage parameters li and the rotational spring stiffness values Keq;i, which
are equivalent to the concentrated damages, as follows:

li ¼
E0I0

L

1

Keq;i
; i ¼ 1; . . . ;n. (D.1)

It should be noted that: for li ¼ 0, correspondent to the presence of no crack, Eq. (D.1) becomes Keq;i ¼ 1; on the other
hand, for li ¼ 1, correspondent to an entirely damaged cross-section, Eq. (D.1) becomes Keq;i ¼ 0.

A common approach for modelling the effect of concentrated cracks on the flexural stiffness is based on the introduction
of an elastic hinge (a local compliance), which macroscopically quantifies the relation between the applied load and the
strain concentration surrounding the crack [27–30]. This method gives expressions for the elastic rotational spring stiffness
equivalent to the crack dependent on the crack depth.

For example, when a crack of uniform depth d is present in a rectangular cross-section of width b and height h, the
following expression for the stiffness Keq is used to unify the treatment of the models proposed in the literature:

Keq ¼
E0I0

h

1

CðbÞ
, (D.2)

where b ¼ d=h is defined as the ratio between the crack depth d and the cross-section height h, and C(b) is the
dimensionless local compliance.

According to Liebowitz and Claus [31], Liebowitz et al. [32], Rizos et al. [35], and Okamura et al. [56], the local
compliance C(b) computed from the strain energy density function takes the following form:

CðbÞ ¼ 5:346ð1:86b2
� 3:95b3

þ 16:375b4
� 37:226b5

þ 76:81b6
� 126:9b7

þ 172b8
� 143:97b9

þ 66:56b10
Þ. (D.3)

Ostachowicz and Krawczuk [33] instead proposed the following expression for the local compliance C(b):

CðbÞ ¼ 6pb2
ð0:6384� 1:035bþ 3:7201b2

� 5:1773b3
þ 7:553b4

� 7:332b5
þ 2:4909b6

Þ. (D.4)
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It must be noted that the crack models based on a continuous description of the beam stiffness reduction in the vicinity of
the crack can be approximated by an approach that lumps flexibility by imposing that the rotation discontinuity due to the
concentrated flexibility reproduces the relative rotation of the cross-sections affected by the crack.

For example, the model proposed by Bilello [36] gives the following expression for the local compliance C(b):

CðbÞ ¼
bð2� bÞ

0:9ðb� 1Þ2
. (D.5)

Chondros et al. [57] provided a lumped cracked flexibility model equivalent to their continuous model using the following
expression for C(b):

CðbÞ ¼ 6pð1� n2Þð0:6272b2
� 1:04533b3

þ 4:5948b4
� 9:9736b5

þ 20:2948b6

� 33:0351b7
þ 47:1063b8

� 40:7556b9
þ 19:6b10

Þ. (D.6)

The relationship between the damage parameters li adopted in this work and the classical crack models can now be
obtained by substituting the equivalent stiffness Keq, which is given by Eq. (D.2), into Eq. (D.1), and is written for the i-th
crack as follows:

li ¼
h

L
CðbiÞ; i ¼ 1; . . . ;n. (D.7)

Eq. (D.7) provides the relationship between the damage parameters li and the dimensionless local compliance CðbiÞ, given
by the models reported in Eqs. (D.3)–(D.6). Furthermore, Eq. (D.7) means that the physical meaning for the damage
parameters li as ‘‘dimensionless local compliance’’, due to the cracks, and normalised with respect to the ratio of L/h of the
beam, can be inferred.

The damage parameters li have been directly related to the crack depth bi, via Eq. (D.7), in order to make the present
approach independent of the values of the parameters gi and of the constant A.
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